vllm.model_executor.models.opt ¶
 Inference-only OPT model compatible with HuggingFace weights.
  OPTAttention ¶
  Bases: Module
Source code in vllm/model_executor/models/opt.py
   attn  instance-attribute  ¶
 attn = Attention(
    num_heads,
    head_dim,
    scale=scaling,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.attn",
)
  out_proj  instance-attribute  ¶
 out_proj = RowParallelLinear(
    embed_dim,
    embed_dim,
    bias=bias,
    quant_config=quant_config,
    prefix=f"{prefix}.out_proj",
)
  qkv_proj  instance-attribute  ¶
 qkv_proj = QKVParallelLinear(
    embed_dim,
    head_dim,
    total_num_heads,
    bias=bias,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv_proj",
)
  __init__ ¶
 __init__(
    embed_dim: int,
    num_heads: int,
    bias: bool = True,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/opt.py
   forward ¶
  Source code in vllm/model_executor/models/opt.py
    OPTDecoder ¶
  Bases: Module
Source code in vllm/model_executor/models/opt.py
 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295  |  | 
  embed_positions  instance-attribute  ¶
 embed_positions = OPTLearnedPositionalEmbedding(
    max_position_embeddings, hidden_size
)
  embed_tokens  instance-attribute  ¶
 embed_tokens = VocabParallelEmbedding(
    vocab_size, word_embed_proj_dim
)
  final_layer_norm  instance-attribute  ¶
 final_layer_norm = LayerNorm(
    hidden_size,
    elementwise_affine=layer_norm_elementwise_affine,
)
  project_in  instance-attribute  ¶
 project_in = ReplicatedLinear(
    word_embed_proj_dim,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.project_in",
)
  project_out  instance-attribute  ¶
 project_out = ReplicatedLinear(
    hidden_size,
    word_embed_proj_dim,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.project_out",
)
  __init__ ¶
 __init__(
    config: OPTConfig,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/opt.py
   forward ¶
 forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None,
    inputs_embeds: Tensor | None = None,
) -> Tensor | IntermediateTensors
Source code in vllm/model_executor/models/opt.py
   OPTDecoderLayer ¶
  Bases: Module
Source code in vllm/model_executor/models/opt.py
   fc1  instance-attribute  ¶
 fc1 = ColumnParallelLinear(
    embed_dim,
    ffn_dim,
    bias=enable_bias,
    quant_config=quant_config,
    prefix=f"{prefix}.fc1",
)
  fc2  instance-attribute  ¶
 fc2 = RowParallelLinear(
    ffn_dim,
    embed_dim,
    bias=enable_bias,
    quant_config=quant_config,
    prefix=f"{prefix}.fc2",
)
  final_layer_norm  instance-attribute  ¶
 final_layer_norm = LayerNorm(
    embed_dim,
    elementwise_affine=layer_norm_elementwise_affine,
)
  self_attn  instance-attribute  ¶
 self_attn = OPTAttention(
    embed_dim=embed_dim,
    num_heads=num_attention_heads,
    bias=enable_bias,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.self_attn",
)
  self_attn_layer_norm  instance-attribute  ¶
 self_attn_layer_norm = LayerNorm(
    embed_dim,
    elementwise_affine=layer_norm_elementwise_affine,
)
  __init__ ¶
 __init__(
    config: OPTConfig,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/opt.py
   forward ¶
  Source code in vllm/model_executor/models/opt.py
   OPTForCausalLM ¶
  Bases: Module, SupportsPP, SupportsLoRA
Source code in vllm/model_executor/models/opt.py
   hf_to_vllm_mapper  class-attribute instance-attribute  ¶
 hf_to_vllm_mapper = WeightsMapper(
    orig_to_new_prefix={"decoder.": "model.decoder."}
)
  make_empty_intermediate_tensors  instance-attribute  ¶
    model  instance-attribute  ¶
 model = OPTModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)
  packed_modules_mapping  class-attribute instance-attribute  ¶
    __init__ ¶
 __init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/opt.py
   compute_logits ¶
     forward ¶
 forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: Tensor | None = None,
) -> Tensor | IntermediateTensors
Source code in vllm/model_executor/models/opt.py
   get_input_embeddings ¶
     load_weights ¶
  Source code in vllm/model_executor/models/opt.py
    OPTLearnedPositionalEmbedding ¶
  Bases: Embedding
Source code in vllm/model_executor/models/opt.py
   __init__ ¶
  Source code in vllm/model_executor/models/opt.py
   OPTModel ¶
  Bases: Module
Source code in vllm/model_executor/models/opt.py
   decoder  instance-attribute  ¶
 decoder = OPTDecoder(
    config,
    cache_config,
    quant_config,
    prefix=f"{prefix}.decoder",
)
  make_empty_intermediate_tensors  instance-attribute  ¶
 make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states"], hidden_size
    )
)
  __init__ ¶
 __init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/opt.py
   forward ¶
 forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None,
    inputs_embeds: Tensor | None = None,
) -> Tensor | IntermediateTensors